
System Administration and your Bio-Linux Machine
System Administration and your Bio-Linux Machine...1
System Administration and your Bio-Linux Machine...2

The bare minimum of Bio-Linux system administration.. 2

The Bio-Linux Environment ...3

Creating new users.. 3

Checking the logs... 5

What is happening each day... 5

Dot files... 6

Shells ... 6

Environmental Variables.. 7

Login initialisation files...8

Password files...9

Files and permissions...11

Accessing files from other areas of your machine..13

Editing files...14

Linux filesystems..15

A couple of notes.. 16

Ways to log into a Bio-Linux machine...17

Starting up and shutting down... 17

Run levels..18

Shutting down the machine.. 19

What happens when the system crashes..20

Starting and stopping services..20

Useful sites.. 21

1

System Administration and your Bio-Linux Machine

These notes have been written for Bio-Linux 4. If you are running an older version of
Bio-Linux, we highly recommend that you update your system as soon as possible.

The bare minimum of Bio-Linux system administration

1) Get a log book.

2) Use your log book! Record anything you do to your machine from a system perspective.
This includes files added or changed, users added, programs added, fixes you carried out,
etc. This will make it easier for others to find out what is happening on the system when
you are unavailable, and will also save you lots of time as occasions will doubtless arise
where you need to repeat something you did earlier, or recall what you did earlier because
of downstream implications.

3) ALWAYS make copies of system files before editing them.

4) Keep a record of the packages, programs, databases and anything else you add to your
system.

5) Get to know your machine – monitor the logs, monitor the space usage, know what is
running and what should not be running on your machine.

6) Keep copies of key configuration files such as /etc/fstab, /etc/passwd, and /etc/group as
printouts (e.g. stapled into your log book), or at the very least, on another system. Having
copies of such files can save a lot of time should things go wrong in the future.

7) Clear up after yourself on your system. Don’t use the manager account as a general
dumping ground – the more organized your machine is, the easier your life as sysadmin will
be. And the easier it is for people to take over your responsibilities if/when necessary.

8) Bio-Linux machines are updated automatically each evening. However, it is worth
running a periodic check (e.g. once a week) to see what may require manual updating by
you. There are user friendly tools such as synaptic that make this a simple process.

9) Try and establish a routine for administering your system. For example, log files and
space usage should be monitored daily.

The most important Bio-Linux documents can be accessed through links on the web page:

http://envgen.nox.ac.uk/biolinux_doc.html

2

The Bio-Linux Environment

Information about what is installed on a Bio-Linux box, where it is, and what the default
settings are is given on the following web page:

http://envgen.nox.ac.uk/envgen/software/archives/000499.html

User accounts on Bio-Linux

regular user accounts – these have the least privileges and thus can do the least harm. All
bioinformatics work should be done within a regular user account, whether it be a pre-
configured one, or one you have made subsequently. All the user accounts you choose to
create when running the setup.perl program when you install Bio-Linux 4 are added to the
groups: users, audio, cdrom, floppy

root – the almighty account. Root can do anything including destroy the system. Root
should be used as seldom as possible. There are very few circumstances that require you to
log in as root.

manager – the manager account is somewhere between a user account and the root account
in that it is just a regular user, but has sudo privileges by default. This means that if
commands are run with the word sudo preceding them, the command is run with root
privileges.

egdcmanager – this is an administrative account for EGTDC staff to access should you
need help with your system. You are under no obligation to allow us access to your
machine, but sometimes it aids us in giving you help if we can get into your system and see
what is there. We will request permission before logging into your machine. Please discuss
with us if you are uncomfortable about having this account on your system.

Creating new users

There are a number of ways that new users can be added to the system. Two possibilities
are to use the useradd command on the command line or to use the graphical interface
provided by webmin.

Default files added to each user’s account can be found in /etc/skel.

To see the defaults used when running useradd without flags, type:

/usr/sbin/useradd –D

3

An example of creating a new user called user6, a member of group users, audio, cdrom
and floppy using the useradd command is to type the following all on a single line:

sudo /usr/sbin/useradd –m –g users –G audio,cdrom,floppy –s /bin/zsh user6

You should now change the password of the user so that they can log in.

sudo passwd user6

The user will need to change their password as soon as they do log in, using the passwd
command.

Further information about creating users, including how to access webmin, can be found at:

http://envgen.nox.ac.uk/envgen/software/archives/000511.html

The power of sudo

It is good practice not to log on as root unless absolutely necessary. However, you
frequently need “superuser” powers for carrying out system administration tasks. Sudo is a
mechanism by which a “regular” user can take on superuser privileges for running a
command. The sudo configuration file is /etc/sudoers.

To use sudo, just prefix the command you wish to run by the word sudo. For example:

sudo less /etc/sudoers

You will then be asked for your user password, (that is, the password of the user you are
logged in as). If that user has the rights to run the command, then it will be run.
You can edit the sudoers file to give a fine level of control to particular users. For example,
you may wish to grant the right to some users to do certain administrative tasks. You can do
this without giving them full administrative rights on the machine by adding information to
the /etc/sudoers file.

For more information, see the man page for sudo, or go to the web page
http://www.sudo.ws

4

Checking the logs

A package called logchecker is installed and running on Bio-Linux by default. It parses a
number of log files on the system by default and sends an email containing anything it
considers to be worth reporting to manager@yourmachine. Please see our FAQ for further
details as well as information on how to get the report email sent to another address that is
not on the Bio-Linux system:

http://envgen.nox.ac.uk/envgen/software/archives/000512.html#logging

The log files monitored by default on Bio-Linux machines are:

/var/log/syslog
/var/log/messages
/var/log/auth.log
/var/log/daemon.log
/var/log/kern.log
/var/log/lpr.log
/var/log/mail.log
/var/log/user.log
/var/log/uucp.log

What is happening each day

There are certain scripts that are set up to run on your system at regular intervals. This can
be daily, weekly, hourly, or in fact, at any time you specify. The process that controls this is
called cron. You can see the things cron is running by listing the scripts in the following
files:

/etc/cron.hourly
/etc/cron.daily
/etc/cron.weekly
/etc/cron.monthly

You can add scripts to these directories if you wish them to run hourly, daily, weekly or
monthly. You can also exert more fine tuned control using cron, but that is beyond the
scope of this document.

5

Dot files

Much of the functionality and customization of your account relies on the presence of
information in “dot” files, that is, files whose names begin with a dot. E.g. .zshrc, .gnome-
desktop, .history, etc.

These files can be listed using the command ls –la

Please do not delete dot files unless you know what they are for and how their deletion will
affect you.

Many of these files have a system-wide counterpart in the /etc/ directory. For example, the
system-wide settings for the z-shell are in /etc/zshrc, while customizations in individual
accounts can be done by editing the ~/.zshrc file. The settings in ~/.zshrc (or any dot file
in a user account) usually override system wide settings.

Shells

The shell is like a buffer zone between your human thinking and the ugliness of the raw
machine. The shell makes it easy to communicate with the machine. It interprets your
commands and runs them. When you log into a Unix/Linux machine, you will be in a shell.

There are various shells available – each has its pros and cons, and each is slightly different
in the way it acts and allows you to interact with it.

Common shells
shell
name

command location description

bourne sh /bin/sh The “original” shell. Good for shell scripting. This is the
most portable shell for writing scripts in. (Watch out – the
sh shell on Bio-Linux is really the Bash shell)

c-shell csh /bin/csh More user-friendly than bourne. Has features like filename
completion, history substitution, job control, and is good
for interactive commands (foreach loops, etc.) Not good
for shell scripting (http://www.faqs.org/faqs/unix-
faq/shell/csh-whynot/

t-shell tcsh /bin/tcsh An enhanced version of csh. Features include command
line editing. This is a very user-friendly shell.

z-shell zsh /bin/zsh A very feature-rich shell. Has good compatibility with sh
and fairly good compatibility with csh. The default, and
only fully supported, shell in Bio-Linux.

Bash
shell

bash /bin/bas
h

An enhanced shell for interactive and scripting use.

6

More information on these and other shells can be found at:
http://www.faqs.org/faqs/unix-faq/shell/

All shells that are valid on the machine are listed in the file /etc/shells. The default shell on
Bio-Linux is the z-shell.

To move from one shell to another, type its name. E.g. from z-shell to bash:

manager@mymachine[homdir] sh

sh-2.05a$ tcsh

[manager@mymachine ~]

To leave the shell and go back to your previous shell, type exit.

Environmental Variables

There is a lot of material available on the web about environmental variables. One
document to look at is:

http://www.ee.surrey.ac.uk/Teaching/Unix/unix8.html

The commands used to add or change the value of an environmental variable depend on the
shell you are working in.

Bourne: export MYENV=blahblah

csh, tcsh: setenv MYENV blablah

zsh: you can use either of the above

To see the result type printenv MYENV or echo $MYENV

To see all shell variables and environmental variables, use the command

set | less

7

History

By typing the command history, you can see the last 15 commands you have run. By giving
it a number as a parameter, you can alter the default behaviour to show a longer list of your
past commands. For example, to show the last 50 commands, you would type:

history -50

The record of your past commands that is used to generate this information is held in a dot
file.

The command history is separate for each shell. The command history file for the z-shell is
stored in ~userx/.zsh_history.

Login initialisation files

When a user logs in, a number of initialisation files are read. These vary according to what
the default shell of the user is.

System wide, the files of interest are:

/etc/profile
/etc/zsh/zshrc
/etc/bash.bashrc

Users can override the defaults set centrally, or add their own settings, using “dot” files in
their account. There are a number of possibilities depending on their default shell and what
they exactly want.
Key files include

~/.zshrc
~/.profile
~/.login

These files are sourced at different times:
.profile and .login are executed when a user logs in.
.zshrc is executed every time a new shell is spawned.

On this basis – information stored in a .login or .profile file should be that which needs to
be executed at login time. This includes such things as:

8

• setting the PATH
• setting the default file protection (with umask)
• setting the terminal type
• setting other environmental variables

The types of things you might want in a .zshrc file include:

• setting shell variables
• defining aliases

Note: Shell initialization files are executed before login initialisation files – e.g. first .zshrc
and then .login

Tips on editing these files can be found at:

http://wwwhepix.web.cern.ch/wwwhepix/wg/scripts/www/shells/user.html

Password files

/etc/passwd

The information stored in /etc/passwd takes the form:

username:x:uid:gid:description:home_directory:default_shell

Do not edit the password file by hand unless you have good reason and know what you
are doing!

In general, this file is referred to for information only. The x in the second field is where an
encrypted copy of that user’s password used to be stored. The password information is now
held in /etc/shadow (see below).

uid – user identification number. Each user should have a unique uid. By convention, uid’s
of less than 100 are reserved for system accounts. Root has uid 0.

gid – group identification number. Each user belongs to at least one group, and every group
has a unique number. Numbering for user groups usually starts at 100. See the section on /
etc/group below.

The information in /etc/passwd is used by many tools (e.g. ls) to display file ownership,
etc. Thus, /etc/passwd needs to be world readable.

9

You can find out the uid or gid (and other information about users) using the id command.
To find out about other users you have to run the command with sudo. For example, to find
out my own uid, I can type:

id -u

Note: If you are an experienced system administrator, you may wish the default shell for
your users on Bio-Linux to conform to the default shell they are using on other systems. In
the case of new users, just create the user with the appropriate default shell. For users
already on the system, they can change their own default shell using the chsh command, or
you can change it for them as manager by using sudo. For example, to change the default
shell for user bsmith to the t-shell, you would type:

sudo chsh –s /bin/tcsh bsmith

Remember that to find out what shells are available on the system, you can look at the file /
etc/shells. However, remember that Bio-Linux is set up to be used with the z-shell by
default. If you use another shell and have problems running any of the bioinformatics
software, please refer to your local Linux guru (if there is one!), or if not, please email the
helpdesk at helpdesk@envgen.nox.ac.uk.

/etc/shadow

Password information for accounts is all held in the /etc/shadow file. While /etc/passwd is
world-readable, /etc/shadow is only readably by root.

/etc/shadow contains password information, and other information such as account and
password expirations, etc. The information in this file takes the form:

username:encrypted_passwd:######:0:99999:#::::

A blank entry in the password section means that no password is required to log on
(generally a very bad idea!) A * in this section means the account has been disabled.

The third field is the number of days since Jan 1, 1970 since the password was last
changed.

The fourth field is the number of days before the password may be changed

The fifth field is the number of days after which a password must be changed (99999 is a
long time).

The sixth field is how many days a user should be warned before their password expires.

The seventh field is the number of days after the account expires that it should be disabled.

10

The eighth field is the number of days since Jan 1, 1970 that an account has been disabled.

The final field is a reserved field that could get assigned in the future.

An aside into groups - /etc/group

Groups are the easiest mechanism to enable users to share files and other system resources.

All groups should be defined in the /etc/group file. The information in that file takes the
following form:

groupname:x:gid:users_in_group

Note that by default when a new user is created, a group of the same name is created, and
the default umask (explained later) allows full read and write access to both user and group.
Although this in essence means that only the user themselves can access files they create by
default, this is probably not a particularly sensible default in most circumstances!

The information on the command useradd given above shows how to circumvent this
default behaviour.

If you look at the default /etc/group file on Bio-Linux, it should be clear what groups users
on the system belong to, and in conjunction with the /etc/sudoers file, why the manager has
sudo rights.

Files and permissions

Basic file permissions are covered in the Introduction to Bio-Linux course. Here we cover how
to grant permissions in more depth, and consider cases which are more likely to arise as the
system administrator of a multi-user machine.

The command to change permissions is chmod. You have to specify who you are modifying
the permissions of, what the new permissions are, and what file or directory to act upon.

The format of the chmod command is:

chmod who ± permissions filename

Who can be:

u means user and refers to the owner of the file
g means group, and refers to the group the file belongs to
o means others, everyone apart from those above
a means all three, i.e. user, group and others

11

Permissions can be:

r means read permission
w means write permission
x means execute permission

An alternative way to define the permission level is by using octal numbers where
r is worth 4
w is worth 2
x is worth 1

The general command syntax using octals is chmod ### where the first # is a number
representing the permission levels of the owner of the file, the second # is the permission levels
for the group, and the third # gives the levels for all other users of the system.

So, saying chmod 755 would give the owner 7 (r + w+ x), the group 5 (r + x) and all other
users 5 (r + x).

The command umask is used to set the default permission given to any new files and
directories created. If you type umask without any arguments, then it will show you the current
default setting.

The umask is a bit mask – that is it specifies permissions to deny when creating a file.

For example, if you set the umask to 333, all files will be created with read permissions for all
users.

This is because 3 = 2+1, that is 3 = w and x. Umask takes away permissions, so if umask is
given a 3, it will take away w and x.

Setting umask to 377 would give just read permission to the owner of the file, and no
permissions to anyone else. 3 = w and x, and 7 = (4+2+1) = r and w and x. So umask 377
takes away the owner’s w and x permission, and takes away all permissions for the group and
other users.

Note that setting umask to 000 would give the same permissions as umask 111 on files.
Execute permissions are never placed on files by default - you have to explicitly set execute
permissions if you need them.

This is not the case for directories! (See the exercises.)

Directories must be executable to be accessible. If you wish to grant access to a file to
someone, you must make sure that all directories in the path they must traverse from their
account to yours are executable.

12

Geek’s Corner

The reason that umask doesn’t set the execute permissions on a file is that umask is applied
to permissions given to the open() system call. Almost all applications give the mode 0666 to
this call because they are creating data files (as opposed to executable files).

Examples using chmod:

To give read permission to someone in the same group for a file called “filename” in
~/intro_course.

chmod g+r ~ is the same as chmod 740 ~
This gives permission to people in my group to read my home directory….too bad it’s still not
executable though! How will they get into the directory to read what’s there?

chmod g+x ~ is the same as chmod 710 ~
This gives permission to people in my group to get into my home directory…but they can’t list
anything in the directory.

If you grant execute permission on a directory, but not read permission, you can access files for
which you know the exact name, but you cannot list files in the directory, or use the filename
completion facilities of the shell. This is a good way to keep information in an account private,
while granting access to specific files.

chmod g+rx ~/intro_course is the same as chmod 750 ~/intro_course
This gives permission to people in the group to list files in the intro_course directory

chmod g+r ~/intro_course/myfile is the same as chmod 740 ~/intro_course/myfile
This gives permission to people in the group to read the file myfile (assuming they already
have permission to “see” into the intro_course directory).

Accessing files from other areas of your machine

There may be situations where you want someone else to be able to copy or read one of
your files, or, as the administrator of the machine, you may need to arrange for certain
directories or files to be shared by various users of your system.

For the majority of Bio-Linux systems, assigning appropriate user groups and file permissions
will be the best way forward

13

Information on permissions and how to share files with other users can be found at:
http://www.linux-mag.com/2002-11/power_01.html

Editing files

In the basic course, we looked briefly at the use of nano and nedit.

When editing system files, we could encourage you to use vi or emacs.

Vi is not an easy editor for anyone who has only used programs like Word in the past.
However, you will find it is fast, efficient, and often the best choice for the type of changes
usually necessary for system files.

In fact, vi on Bio-Linux is not “true” vi, it is vim, an improved version of vi. There is lots
of information available about vim through:
www.vim.org

A vim tutorial is available by typing vimtutor on the command line.

Rules of good practice for editing system files:

Rule 1: Make copies of system files BEFORE you edit them.

Rule 2: Make copies of system files BEFORE you edit them

Rule 3: See rules 1 and 2.

It is always tempting to just change something quickly and not create a copy first. Any old
hand at system administration will have tales to tell about the horrors experienced because
of that one time they didn’t follow rules 1, 2 or 3. Corrupted files can occur for a variety of
reasons. These include a system crash in the middle of editing a file, or the replacement of a
space with a tab or a tab with a space, or other problems with non-visible characters. Going
back to an old working copy of a file is often the most efficient thing to do!

Rule 4: Set up a naming system for copied files and follow it.

For example, you could take a system file like /etc/fstab, copy it to /etc/fstab_old and then
edit /etc/fstab. The next time you edit the file, you copy /etc/fstab to /etc/fstab_old,
thereby overwriting the old /etc/fstab_old and still ensuring you have a relatively recent
working copy if it should all go horribly wrong.

Another route to take is to name your files according to the date so you can backtrack
versions. For example, you could have copied /etc/fstab to /etc/fstab_070603 if it were,
saying June 6, 2003, then you would rename it something else the next time you changed it.

14

This might not be particularly useful for /etc/fstab, but might be for other files. The only
danger here is that you could end up accumulating a LOT of files. (Refer to point 7 on the
second page of this document!)

Linux filesystems

Basics

Linux/unix systems are file-based systems. The default directory structure in Linux is
similar to most other unix-based systems. A listing, with explanation of some of the basic
default directories can be found in the article The Linux filesystem hierarchy: a short
description:

http://www.linuxnovice.org/main_focus.php3?VIEW=VIEW&t_id=126

df

The command df shows you information about the filesystems on your machine including
how much space is taken up on different partitions of your hard disk (in this case – on
larger systems, it might be telling you about “volumes” which are basically virtual
partitions that can be made up of sections of many disks). df can be run with the –k or –m
flag so that space is reported in kilobytes or megabytes respectively.

You should run df on your machine daily (at a minimum!) to monitor space usage.

The configuration for your filesystem is held in a file called /etc/fstab.

Great care must be taken when editing this file. Make sure to make a backup copy first!
Corrupted /etc/fstab files are common problems on Linux/Unix machines.

Each line of /etc/fstab contains six space-delimited fields.

Full details of what is contained in this file are available on the man page:

man fstab

15

A couple of notes

Filesystems are “mounted” onto disk areas. Disk areas have ugly names like /dev/hda5.
Onto this disk area, I can mount a filesystem. It is this filesystem I then work with.

A mountpoint is an existing (empty!!) directory on your system. A filesystem can be
mounted onto this empty directory. If you mount a filesystem onto a directory with files in
it, those files are effectively hidden until you unmount the filesystem sitting on top – always
use empty directories for mountpoints!

A common place to put directories that will server as mountpoints is /mnt.

The third field in /etc/fstab is for filesystem types. There are a number of different
filesystem types, and for systems with removable media (such as CD’s and floppies), one
option is to set this field to read: auto. This tells the system to probe for the filesystem type.
The order of the filesystem types checked is held in a file called /etc/filesystems. .

Mount commands commonly used for cdroms, floppy disks and memory keys are:

mount /media/cdrom
umount /media/cdrom

mount /media/floppy
umount /media/floppy

mount /media/usbkey
umount /media/usbkey

These are actually shortcuts for the full commands which for a cdrom for example, would
take the form:

mount /dev/hdc /media/cdrom

The system looks for the information it needs to properly mount devices like those for
cdroms and floppy disks in the /etc/fstab file. Note the user in the fourth field of the entries
in this file for /dev/hdc and /dev/fd0. It is this term which enables “ordinary” users to
mount and unmount the CD and floppy drives.

16

Ways to log into a Bio-Linux machine

Full details on this topic can be found at:

http://envgen.nox.ac.uk/envgen/software/archives/000506.html

Who is on the machine? Who has been on the machine?

The command who will tell you who is currently logged onto the machine.

The command last will tell you who has been logged onto the machine – last reads a file
called /var/log/wtmp and can tell you who has logged in, when, for how long and where
from.

Starting up and shutting down

An outline of what happens upon startup, before you see the login screen, is listed at:
http://www.luv.asn.au/overheads/linux-startup.html

The file /var/log/dmesg can be very informative about what exactly was happening when
the machine booted up.

The first screen you see after the Dell logo is the bootloader menu. Bio-Linux uses GRUB
as the bootloader, though there is another popular one called LILO.

The function of the bootloader is to select the operating system to run, and to pass any
parameters to the system kernel before it starts. As soon as you select an option, or the
timer runs down, GRUB hands control of the machine to the operating system kernel.

GRUB installs onto the master boot record (MBR) of the hard drive, and also keeps
configuration files in the directory /boot/grub. If you needed to change any settings you
would edit the /boot/grub/menu.lst file, but it is unlikely you will ever need to do this.

More information can be found at:
http://www.gnu.org/software/grub/

17

Run levels
These are described in more detail at:

http://qref.sourceforge.net/Debian/reference/ch-system.en.html#s-runlevels

Run Level Description
0 Halt
1 Single user
2 Multiuser – default runlevel on Debian

3, 4, 5 The same as 2 – can be customized by user
6 Reboot

The first process run after the kernel has loaded is /sbin/init – this runs with pid 1.

The default run level on your system is 2.

0 and 6 are used for shutdown and reboot of the machine respectively.

/etc/inittab

init reads the file /etc/inittab to determine what to do and when to do it.

The default run level for your system is defined in this file.

Entries in the /etc/inittab file take the form:

id:runlevels:action:process

For more information on this, please refer to the Boot Process section of The CTDP Linux
Startup Manual (link at the bottom of document).

The series of lines where the action is, contains the script name: /etc/rc.d/rc. This script
takes the argument at the end of the line, (0, 1, 2, etc.), which correspond to a run level.
Commands in this file cause the execution of “kill” scripts, (those that start with the letter
K in the appropriate directory) to run, and then runs the startup scripts, (those that start with
the letter S). This is done for each run-level, (as can be seen by the series of commands in
the /etc/inittab file).

Note that the “K” and “S” scripts are in fact softlinks to the scripts themselves, which are
stored in /etc/init.d/ This is important to remember if you edit scripts.

18

The K and S scripts are executed in alphanumeric order. Thus, if you are adding scripts,
you can control them in the bootup/shutdown process as they are executed, by giving an
appropriate soft link name in the appropriate run level directory.

The /etc/nologin file

If a file called /etc/nologin exists, no user can log in. Only root can be logged in at the
console. This can be very useful when you are troubleshooting and need the whole system
to be up and functional, including networking, but don’t want users logging onto the
system. If you put information into the /etc/nologin file, that information will be reported to
any user trying to log in. E.g. you can let them know the system is down for maintenance
and to try back later.

/etc/motd

The contents of the /etc/motd (message of the day) file appear on a user’s terminal when
they first log in. This is an extremely useful way to advertise messages about impending
shutdowns if people are logging into your machine using terminal sessions such as ssh.

Shutting down the machine

This can be done by anyone with access to the console by clicking on the System icon.

The machine can be shut down from the command line by anyone with sudo or root
privileges.

The command usually used is shutdown.

When you shut the machine down cleanly, a number of things happen:

• users logged in are notified the system is going down. (Hopefully you have given
them advanced warning of this shutdown.)

• all running processes are sent a signal telling them to terminate
• all subsystems are shut down gracefully
• all users still on the system are logged off
• all pending disk updates are completed (sync)
• drives are unmounted

19

What happens when the system crashes

If your machine does crash, upon the next boot, a full filesystem check will be carried out
using fsck.

Fsck goes through the system and tries to recover any corrupt files it finds. Anything
resulting from this recovery operation is placed in a directory called /lost+found. Files in
this directory will not always be complete or usable; it depends on how successful the
recovery was.

More on fsck

fsck, (filesystem check) checks the filesystem’s consistency, reports any problems it finds,
and optionally repairs problems.

With the exception of the root system, fsck runs on unmounted filesystems. To run fsck on
the root system, you must be in single user mode.

You will probably not have to run fsck manually often, but please make sure you read the
documentation on this important program so that you will understand how it works, and
how to interpret the information it gives you, should a crash occur.

Starting and stopping services

You can start and stop many of the services running on your machine by typing the name of
the appropriate startup script, followed by start or stop.

If the script has been written properly, you should be able to find what options are available
by just typing the name of the script. For example, typing:

/etc/init.d/sshd

will give you information on the options available for running this script.

20

Useful sites

A really good reference for system administration of Linux and Unix systems:
Essential System Administration – by Aeleen Frisch, ISBN 1-56592-127-5

There is tons of information about the Debian Linux system at:

http://www.debian.org/

A major source of information for Linux can be found at The Linux Documentation
Project:

http://www.ibiblio.org/mdw/

This is a portal to howto’s, faqs, man pages, and online magazines about Linux.
Linux administration made easy

http://www.tldp.org/LDP/lame/LAME/linux-admin-made-easy/

Linux Newbie Administrator FAQ

http://linux.about.com/library/bl/open/newbie/blnewbie_4toc.htm

21

